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A Schur complement formulation that utilizes a linear iterative solver is derived to solve a
free-boundary, Stefan problem describing steady-state phase change via the Isotherm–
Newton approach, which employs Newton’s method to simultaneously and efficiently
solve for both interface and field equations. This formulation is tested alongside more tra-
ditional solution strategies that employ direct or iterative linear solvers on the entire Jaco-
bian matrix for a two-dimensional sample problem that discretizes the field equations
using a Galerkin finite-element method and employs a deforming-grid approach to repre-
sent the melt–solid interface. All methods demonstrate quadratic convergence for suffi-
ciently accurate Newton solves, but the two approaches utilizing linear iterative solvers
show better scaling of computational effort with problem size. Of these two approaches,
the Schur formulation proves to be more robust, converging with significantly smaller Kry-
lov subspaces than those required to solve the global system of equations. Further
improvement of performance are made through approximations and preconditioning of
the Schur complement problem. Hence, the new Schur formulation shows promise as an
affordable, robust, and scalable method to solve free-boundary, Stefan problems. Such
models are employed to study a wide array of applications, including casting, welding,
glass forming, planetary mantle and glacier dynamics, thermal energy storage, food pro-
cessing, cryosurgery, metallurgical solidification, and crystal growth.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The mathematical problem of finding the interface between melt and solid phases for the case of a general temperature
field in a freezing liquid is classically referred to as Stefan’s second problem [1]. Since the interface is an unknown function of
the temperature field, the Stefan problem gives rise to a moving- or free-boundary problem of great relevance for modeling a
variety of phase-change processes, including applications areas as diverse as casting, welding, glass forming, planetary man-
tle and glacier dynamics, thermal energy storage, food processing, and cryosurgery. The motivation for this work is the study
of solidification and melt crystal growth processes, in which the kinetics of the phase change from liquid to solid occur very
quickly and the location of the melt–solid interface is well represented by the melting-point isotherm in the system [2]. The
solidification and crystal growth modeling literature is extensive, and we do not attempt to fully summarize it here; some
overviews are available in Refs. [2–9].

In seeking a numerical solution of Stefan, free-boundary problems, the underlying field equations are discretized, includ-
ing the temperature field but also often including fluid flow and other phenomena, which are then coupled with conditions
. All rights reserved.
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that represent the melt–solid interface. Methods of representing the interface generally are of two basic types: fixed-grid and
deforming-grid. A comprehensive comparison of the relative advantages and disadvantages of these approaches is beyond
the scope of this paper. However, we note that fixed-grid methods, such as phase-field [10], enthalpy [11], level set [12],
explicit front-tracking [13], volume-of-fluid [14], sharp interface [15], and extended finite element [16] methods, provide
for great flexibility to represent topologically complicated melt–solid interfaces. On the other hand, deforming-grid methods
make it possible to achieve high accuracy with much less grid refinement than typically required by fixed-grid methods, pro-
vided that the interface can be represented without excessive distortion of the computational cells. Indeed, with proper
implementation of conditions at the interface, the accuracy of solving for the interface position is comparable to the accuracy
of solving the underlying field variables; see, e.g., [17,7].

Even after the choice of field and interface representation, a solution strategy for the discretized problem, which is non-
linear, must be implemented. Most often, iterative solution algorithms for these problems have been constructed around
Newton’s method. Here, the important distinction is whether Newton’s method is implemented in a manner that solves
for both field and interface unknowns simultaneously or whether a decoupled approach is taken. A decoupled solution algo-
rithm solves, in turn, the field equations with the interface fixed, followed by an update of the interface position. While easier
to implement, this procedure will not yield the efficient, quadratic rate of problem convergence provided by a simultaneous
Newton approach. Ettouney and Brown [17] conducted a landmark analysis of these issues and recommended a full Newton
approach coupled with an implicit representation of the interface based on the melting point of the system, which they
termed the Isotherm–Newton approach.

The Isotherm–Newton approach has proven to be very effective for the solution of two-dimensional problems when di-
rect matrix solution techniques are employed. However, this method suffers when an iterative linear solver is employed to
solve the linear equations of each Newton step. This is caused by the poorly conditioned Jacobian matrix that arises from
applying the isotherm condition to form residual equations for determination of the melt–solid interface position. This
choice, while central to the method’s accuracy [17,7], formulates residual equations for the interface position that are implic-
itly defined via the temperature field variables, leading to a block of zeros along the Jacobian matrix diagonal. Indeed, the
Isotherm–Newton formulation of the Stefan problem gives rise to a linear system of saddle point type, which typically proves
to be extremely challenging for iterative solution. Benzi et al. [18] provide an extensive overview of the vast literature asso-
ciated with these problems and the various techniques employed for their iterative solution.

In our experience, iterative linear solvers are prone to fail when applied to the global system of equations arising from the
Isotherm–Newton approach. This is especially important for three-dimensional problems, where direct methods often prove
to be too expensive to solve even the field equations alone, and linear iterative solvers need be employed. Such failures are
rarely reported in the literature, though we shall state here that the results from our prior three-dimensional, Bridgman crys-
tal growth simulation reported in [19] were only attained after the field and interface unknowns were solved using a decou-
pled iteration, where the field equations were solved on a fixed domain using Newton’s method and GMRES, followed by an
independent update of the interface position. While successful, this solution strategy resulted in linear convergence rates for
the full problem. Notably, simultaneous solution of the entire problem via Newton’s method, as posed by the Isotherm–New-
ton, proved infeasible for these computations using an iterative linear solver. In this case, convergence of the linear solution
step was never obtained. Measures to improve performance were either ineffective, such as reordering the equations, or too
expensive, notably increasing the size of the Krylov space used in GMRES. We note that other researchers attempting to solve
such Stefan-like problems in three dimensions have also resorted to a decoupled solution strategy [20–24].

Hence, our motivation is to formulate a new solution approach that is faithful to the underlying ideas presented in the
Isotherm–Newton approach but will result in a formulation far more amenable to solution via linear iterative solvers. We
do this via a Schur complement decomposition of a block representation of Newton’s method that separates the interface
unknowns from the field variables. A more robust formulation will allow for the key advantage of the Isotherm–Newton
approach, namely efficient, quadratic convergence, to be attained using scalable, parallel algorithms on large-scale
systems.

2. Problem formulation

2.1. Governing equations

We construct a two-dimensional Stefan problem to represent a melt crystal growth process. Specifically, we consider a
two-phase, heat-conduction problem in a cylindrical geometry that features a free-boundary representing the phase-change
interface. Fig. 1(a) shows a schematic diagram of the geometry of the sample problem. This sample problem is based upon
the Bridgman method employed to grow single crystals from the melt; more thorough discussions of this problem are avail-
able in Refs. [3,7–9,2].

The temperature field and coordinates are non-dimensionalized with respect to characteristic temperature and length
scales, Tc and L, and we write steady-state conservation equations as:
r2Ts ¼ 0 in Xs ð1Þ
jr2Tm ¼ 0 in Xm ð2Þ



Fig. 1. Schematic of the two-dimensional, Stefan problem with melt and solid phases separated by an interface (dXms) that is computed as part of the
underlying thermal problem. (a) A representative 40 � 40 element mesh is shown at convergence along with (b) the solution of the temperature field (the
melt–solid interface is located at the melting-point isotherm and is marked by the indicated boundary).
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wherer2 represents the Laplacian operator, T is dimensionless temperature with subscripts s and m to denote the solid and
melt domains over which it is defined, and j � km/ks is the ratio of melt to solid thermal conductivities.

Along the boundary between the melt and solid phases, dXms, we impose several, required conditions:
n � jrTs � n � rTm ¼ PeSðn � ezÞ ð3Þ
Ts ¼ Tm ¼ Tmp ð4Þ
Eq. (3) ensures that conductive heat fluxes across the interface, represented on the left-hand-side, balance the amount of
latent heat generated by the phase change, given by the product of the Peclet and Stefan numbers. Respectively, these
dimensionless groups are defined by Pe � VL/a and S � DHf/CpTc, where V is the steady-state solidification rate, a is the ther-
mal diffusivity of the solid, DHf is the latent heat of phase change, and Cp is the heat capacity of the solid. Additional terms in
this condition include the unit vector normal to the melt–solid interface, n, the gradient operator, r, and the unit vector
aligned with the solidification direction, ez in this particular problem.

Eq. (4) is written as one condition but actually sets two distinct constraints. First, it demands that the temperature field be
continuous between the domains of solid and melt. Second, it demands that the interface between the two domains is lo-
cated at the melting-point temperature, Tmp. This has been referred to as the isotherm condition and arises from the math-
ematical description of a solidifying interface in the limit when phase-change kinetics occur on a time scale much faster than
transport time scales in the system [2].

To complete the specification of the test problem, we impose the following boundary conditions:
n � rT ¼ BiðT � Tf Þ along dXext ð5Þ
n � rT ¼ 0 along the centerline ð6Þ
Note that in these boundary conditions, we simply refer to the temperature field using the variable T. A more strict interpre-
tation of the multi-domain problem formulation would require the designation of either Ts or Tm; however, the choice is
obvious in the context of the above conditions. Eq. (5) includes n, an outward-pointing unit vector, Bi � hL/ks, a dimension-
less group defined by a heat transfer coefficient, h. The nondimensional external temperature, Tf, represents an imposed ther-
mal field from a directional solidification furnace (taken to be linear in the axial direction along the outer boundary and
constant along the top and bottom of the problem domain), positioned so that the melting point falls somewhere within
the problem domain and implicitly moving with a speed identical to the steady-state solidification velocity, V. Eq. (6) en-
forces symmetry conditions at the system centerline. We provide a much more detailed discussion of this formulation in
Ref. [9].
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2.2. Discretization and implementation

While the governing equations of the prior section fully define the Stefan, phase-change problem mathematically, con-
siderable challenges are presented by their solution via numerical methods. Our overall solution strategy, now considered
fairly routine for such problems, employs a Galerkin finite-element discretization of the conservation equations for the field
variables, here the two-dimensional temperature field, using a mesh that is deformed to follow the shape of the phase-
change interface. We discuss the most pertinent features below, emphasizing the challenges generic to the Stefan problem
but downplaying the details of the actual mechanics of the implementation, specifically the method employed to deform the
mesh. We emphasize that the solution approaches tested here are general for the Stefan problem and could be implemented
with any mesh movement algorithm that is applied in a simultaneous iteration with the field variables.

We define a finite-element mesh over the problem domains, constructed so that the mesh deforms to force specific ele-
ment edges to lie along the phase-change boundary, dXms; see Fig. 1(a). Eqs. (1) and (2) are then discretized using the Galer-
kin finite-element method (specifically with a biquadratic, Lagrangian representation of the temperature field) and put into
the weak form. The weak form provides for straightforward and explicit application of the flux boundary conditions repre-
sented by Eqs. (3), (5) and (6). Continuity of the temperature field along the phase-change boundary, dXms, is automatically
enforced by the construction of the underlying finite-element approximation and satisfies one of the constraints imposed by
Eq. (4).

This deforming-mesh implementation conveniently and accurately satisfies several special requirements of the Stefan
problem. First, a discontinuous temperature gradient across the melt–solid interface, arising as a consequence of Eq. (3),
is naturally represented along the border of adjacent elements with C0 continuity (as is the case for Lagrangian basis func-
tions). While this effect can also be represented by discontinuity-capturing representations that allow the interface to run
through a fixed computational cell [15,16], the simplicity of employing a non-moving mesh in these methods must be
weighed against the more involved construction of a suitable, discontinuity-capturing basis. Second, our choice of enforcing
the flux balance along the melt–solid interface, Eq. (3), via the weak form of the field equations, rather than supplying a
Dirichlet boundary condition to set the interfacial temperature at the melting point, has been demonstrated by Ettouney
and Brown [17] to yield a more accurate and convergent numerical solution.

After the above discretization and assignment of boundary conditions, there remains an unsatisfied requirement of the
Stefan problem, namely that the specific temperature joining the melt and solid domains must exactly be the melting-point
temperature. This condition, set by Eq. (4), asserts that the phase-change interface fall along the melting-point isotherm and
is employed to provide information to locate the free boundary. A consideration of how this condition is implemented and
satisfied yields some insight about the challenges of solving the Stefan problem. In a general sense, let us represent the posi-
tion of the melt–solid interface as a vector function
~x� Gð~xÞ ¼ 0 ð7Þ
where ~x denotes the coordinates of the interface. For a free-boundary problem, our goal is to solve for Gð~xÞ in order to locate
the interface. The isotherm condition demanded by Eq. (4) is then written as
Tð~xÞ � Tmp ¼ 0 along dXms ð8Þ
Rearranging the prior equation to ~x ¼ Gð~xÞ and substituting, we obtain
TðGð~xÞÞ � Tmp ¼ 0 ð9Þ
This isotherm condition is used to form the residual equations for the degrees of freedom associated with Gð~xÞ, namely the
interface unknowns.

Notice that Eq. (9) explicitly involves only the temperature field and is implicit with respect to the interface unknowns. As
a consequence, zeros appear along the diagonals in portions of the Jacobian matrix, as discussed in the next section, thus
rendering poor condition. Another, less-obvious outcome is that this condition introduces a strongly nonlinear equation into
the otherwise linear problem considered here (with respect to the temperature field). This nonlinearity can be readily shown
using an alternative formulation of the problem where the interface position is explicitly immobilized via a coordinate trans-
formation; see, e.g., [17,25]. Of course, the solidification problem may include additional nonlinearities when effects such as
melt convection and radiant heat transfer are included, but these are ignored in the test problem considered here.

As mentioned above, we implement a deforming-grid approach to track the melt–solid interface and construct a mesh to
explicitly conform to its shape by placing specific element edges along it; see Fig. 1(a). Specifically, we employ elliptic grid
generation techniques to govern the movement of the deforming mesh [9]. The mesh equations are discretized using biqua-
dratic basis functions to locate the element nodes. The location of the melt–solid interface is solved by satisfying Eq. (9) via a
Galerkin weak-form equation using a quadratic basis. The interface location provides boundary conditions to the mesh equa-
tions to locate specified nodes of the mesh (that define the boundary between melt and solid domains) along the melt–solid
interface. Additional boundary conditions on the mesh equations set the shape of the outer domain while allowing the grid
points to slide along the boundaries as needed; specific details can be found in Ref. [26].

It is important to realize that the mesh unknowns are included among all of the other problem unknowns in this formu-
lation. Thus, when the problem is solved (via Newton iterations, as will be explained in the next section) all unknowns are
updated simultaneously. We do not decouple the mesh movement from the solution of the field variables nor are field
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variable values interpolated from one mesh to another. Indeed, the mesh is simply considered to be part of the overall solu-
tion to the problem. In this sense, the specific mechanism employed to move the mesh between iterations is rather unim-
portant. The same qualitative behavior of the solution algorithm will be displayed whether the mesh is determined by
elliptic equations [27–29] (as is done here), by a pseudo-solid movement scheme [30–32], or by algebraic means [33–35].
All methods will give rise to the general forms considered in the following section.

2.3. Solution via Newton’s method

We employ Newton’s method to solve simultaneously for the field and free-boundary equations specified above. This ap-
proach was originally advocated as the Isotherm–Newton method by Ettouney and Brown [17]. To clarify the ensuing pre-
sentations, we note that a lower-case, bold symbol denotes a vector and an upper-case, bold symbol denotes a matrix.

After discretizing the steady-state field equations, implementing the boundary conditions, and applying a technique to
track the free boundary, our problem is posed as a set of coupled, nonlinear algebraic equations:
rðxÞ ¼ 0 ð10Þ
where r is the residuals vector, a function of the discretized problem unknowns, x. For reasons that will become clear below,
we choose to order the problem unknowns as,
x �
f
i

� �
ð11Þ
where f is a vector of dimension n that contains the degrees of freedom associated with the field variables, here the temper-
ature distribution and nodal coordinates of the mesh, and i is a vector of dimension m that contains only the unknowns asso-
ciated with the representation of the interface. For most problems of this type, there are far fewer degrees of freedom
associate with the description of the interface than of field quantities, so m� n.

We solve the nonlinear residual equation iteratively using Newton’s method; each iteration has the form
Jðxð‘ÞÞdð‘þ1Þ ¼ �rðxð‘ÞÞ ð12Þ
where r is the residual vector, J is Jacobian matrix defined by Jij � @ri/@xj, d is the update vector, and the superscript ‘ denotes
iteration number. Once the above linear equation is solved for d(‘ + 1), an updated solution vector is obtained via
xð‘þ1Þ ¼ xð‘Þ þ dð‘þ1Þ ð13Þ
This procedure is continued until some suitable measure of convergence is attained.
For the ordering of unknowns adopted here, the linear system for each Newton iteration, Eq. (12), has the following block

structure
A B
C 0

� �
df

di

� �
¼
�rf

�ri

� �
ð14Þ
where A is an n � n matrix which is typically banded, B is an n �m matrix which is usually dense, and C is an m � n matrix
that is sparse. The block 0 is an m �m matrix that consists entirely of zeros; this arises from the choice of implementing the
isotherm condition, Eq. (9), which is written only in terms of the temperature field unknowns, as a residual for the interface
unknowns. Subscripts f and i denote quantities associated with field and interface variables, respectively. Despite the block-
diagonal matrix of zeros in the lower-right quadrant, the overall matrix J is nonsingular and poses little difficulty for solution
via a direct method. Note that the in the above Eq. (14) and in ensuing discussions, we do not explicitly indicate the iteration
counter, rather we focus instead on how the linear system at each iteration is solved.
3. Implementation issues

3.1. Solvers

3.1.1. Method 1 (M1): direct solution
Solution of the Newton step via a direct solver, such as Gaussian elimination, has traditionally been very effective, yield-

ing robust quadratic convergence for sufficiently good initial guesses. Using these solution methods, the block of zeros in the
Jacobian matrix is usually not problematic because of fill-in during factorization, which is an advantage of the ordering of the
unknowns specified in the prior section. In practice, pivoting strategies are also usually employed to avoid potential difficul-
ties posed by the diagonal zeros. Finally, the block structure of Eq. (14) can be utilized for special direct solution strategies,
such as band solvers augmented with bordering algorithms; see, e.g., [36–39].

The use of a direct solver for the Newton step represented by Eq. (14) is denoted as Method 1 (M1) in the ensuing tests.
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3.1.2. Method 2 (M2): iterative solution of the global system
Even though the direct solution approach (M1) is quite robust, the computational effort scales nonlinearly with problem

size, as will be discussed in more detail in Section 3.3. Especially for the solution of three-dimensional problems, the effort
associated with each Newton step can become prohibitive. An alternative approach is the use of an iterative linear solver for
the Newton step that may scale more favorably with problem size and may permit easier and more effective parallelization
compared to direct solution methods.

Hence, we denote Method 2 (M2) as the use of an iterative solver for the full Newton step represented by Eq. (14). We
specifically employ the restarted Generalized Minimal Residual (GMRES) procedure of Saad and Schultz [40] with no precon-
ditioning. However, the rows of the Jacobian matrix are scaled with respect to the ‘2 row norm prior to iterations. We choose
not to precondition for two reasons. First, we desire to keep the solution algorithms as simple as possible. Second, the under-
lying Laplacian equations for the temperature field, Eqs. (1) and (2), lead to a discrete system (notably block matrix A of Eq.
(14)) that is symmetric and diagonally dominant and not in need of preconditioning for convergence. We comment in Sec-
tion 3.2 on preconditioning techniques for the more difficult part of the problem (the remaining blocks of Eq. (14)) using the
Schur method explained in the next section.

3.1.3. Method 3 (M3): iterative solution of the Schur complement
Our past experience in solving large-scale simulations of crystal growth from the melt indicates that iterative solution

strategies for the full problem (i.e., solution strategy M2 described previously) often fail, thus motivating a different ap-
proach. Using block elimination, Eq. (14) can be rewritten as
A B
0 S

� �
df

di

� �
¼
�rf

rS

� �
ð15Þ
where 0 is an m � n matrix of zeros, S � � CA�1B is an m �m matrix known as the Schur complement, and rS � � ri + CA�1rf

is its modified right-hand-side.
The solution of this system of equations can proceed in a decoupled manner. Namely, block back-substitution is used to

first solve for the interface update vector di and then for the field update vector df via
Sdi ¼ rS ð16Þ
Adf ¼ �rf � Bdi ð17Þ
We expect that this strategy may pose advantages over the original form, Eq. (14), when an iterative linear solver is em-
ployed. Specifically, Eq. (16) is a much smaller, m �m system which may allow for more affordable solution, even if a larger
Krylov space is required for the solution of this subproblem. At the same time, solution of the n � n system of Eq. (17) should
be no more difficult to solve than the original field equations on a fixed domain, since the left-hand-side contains only A. The
Schur complement formulation therefore represents a ‘‘divide and conquer” strategy, where the field and interface equations
can be separated, with different solution strategies applied.

The actual implementation of this strategy is complicated by the need to compute the action of A�1 in forming both the
Schur complement matrix, S, and the modified right-hand-side vector, rS (as indicated by their definitions after Eq. (15)
above). This would pose little difficulty if we employed a method to directly factorize A into LU form which could subse-
quently be reused with little cost. However, the point of the reformulation of the current problem into Schur complement
form is to more readily apply iterative linear solution techniques. We will return to this issue after outlining the general ap-
proach in what follows.

Ignoring for the moment how we will actually perform the computations, our strategy is to first form the modified right-
hand-side,
rS ¼ �ri þ CA�1rf ð18Þ
Vectors ri and rf and block matrix C are readily available, but the action of A�1 must be computed. We proceed by solving the
linear system of equations
Az ¼ rf ; ð19Þ
for the n-dimensional vector z. This is immediately followed by the calculation of the modified right-hand-side using the
placeholder z � A�1rf as
rS ¼ �ri þ Cz ð20Þ
Next, we must compute the Schur complement matrix
S ¼ �CA�1B ð21Þ
Note that matrices B and C are available, but again we need to compute the action of A�1. We use a similar technique here as
used above for Eq. (19). Here, we solve m systems of linear equations of the form
AY ¼ B ð22Þ
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to obtain the n �m placeholder matrix Y. The Schur complement can then be calculated as
S ¼ �CY ð23Þ
The first step of the Newton update is completed by using the computed values of S and rS to solve Eq. (16) for the interface
update vector, di. For clarity, this equation is repeated below:
Sdi ¼ rS ð24Þ
We remark that this step involves solving only an m-dimensional system; however, the series of calculations needed to form
for the Schur complement, S and its right-hand-side, rS required m + 1 solves of n-dimensional systems involving A.

The second step of the Newton update is attained by computing the field update vector, df, from Eq. (17). However, it turns
out that we have already done the work needed to solve this equation. We formally rearrange Eq. (17) to
df ¼ �A�1rf � A�1Bdi ð25Þ
and realize that the first term of the right-hand-side has already been computed as z � A�1rf from Eq. (19) and the second
term has already been computed as Y � A�1B from Eq. (22). The final step is then trivial to compute as
df ¼ �z� Ydi ð26Þ
Now, let us return to the implementation of this approach using a Krylov-subspace-based, iterative linear solver. We realize
that several steps from the prior procedures involved the solution of linear systems, namely Eqs. (19), (22) and (24). To solve
these systems, we will employ restarted, unpreconditioned GMRES with the same row scaling used in Method 2 of the prior
section. Specifically, before dividing into the block components A, B, and C, the rows of the global Jacobian matrix are scaled
with respect to the ‘2 row norm.

We begin by repeating the Schur subproblem that constitutes the first step of the Newton iteration,
Sdi ¼ rS ð27Þ
On the surface, we expect that this problem may be rather inexpensive to compute, since S is a small, m �m matrix. To get
started, we employ GMRES to solve Eq. (19) for z and use its solution to form rS via Eq. (20). This constitutes one independent
solve of an n-dimensional system using our iterative linear solver.

With the newly formed right-hand-side rS, we construct a method to use our Krylov-based solver to obtain di from Eq.
(27). A suitable candidate solution for di is constructed from the Krylov subspace defined by KS ¼ spanfv; Sv; S2v; . . .g, where
v is the initial Krylov vector, in this case set to v = rS. To proceed, we must be able to evaluate the products of S multiplied by
the initial Krylov vector v. Formally, this would require the computation of
Sv ¼ �CA�1Bv ð28Þ
We could compute the terms in Eq. (28) following the general procedure described above. Namely, we would employ a Kry-
lov-based solver for Eq. (22) to construct approximations to each of the columns of Y from Krylov subspaces of the form
KA ¼ spanfv;Av;A2v; . . .g, where the initial Krylov vector, v, is set by the corresponding column of B. The resulting matrix
of solutions, Y � A�1B, would then be multiplied by C and v in Eq. (28). This approach requires m independent iterative solu-
tions of Eq. (22), an n � n system of equations. However, once Y is computed, it can be reused to compute successive Krylov
vectors with no additional solves.

Seeking a cheaper alternative, we define a new vector, w, which is computed from known quantities as
w � Bv ð29Þ
We now employ this as a right-hand-side for the n � n system of equations
Au ¼ w ð30Þ
Solution of this single equation yields u = A�1Bv. We now form the product of Sv as follows
Sv ¼ �Cu ð31Þ
(compare to Eq. (28)). The net result is that we have computed Sv using only a single iterative solve of the n-dimensional
system of Eq. (30), a significant reduction of effort over the prior approach. Yet, successive Krylov vectors must be evaluated
by forming a new right-hand-side vector and performing an additional iterative solve of Eq. (30). Nevertheless, we expect to
obtain an accurate solution of the original m-dimensional Eq. (27) with, at most, m Krylov vectors (m vectors would, in the-
ory, yield a perfect solution for the case of exact arithmetic) and, likely, significantly fewer will be needed. So, we choose this
alternative formulation, since it will likely be cheaper and never more expensive than the prior procedure.

With Eq. (27) solved, the interface update vector, di, is available and the first step of the Newton iteration is complete. The
second step is straightforward; the known quantities rf, B, and di are used to construct a vector,
q � �rf � Bdi ð32Þ



Table 1
Algorithm for the iterative Schur complement solution of a single Newton step.

I. Solve Sdi = rS for di

A. Compute rS = � ri + CA�1rf

1. Solve Az = rf for z using iterative solver
2. Compute rS = � ri + Cz

B. Iteratively solve Sdi = rS, where S = � CA�1B
1. Form w = Bv where v is the prior Krylov vector associated with the iterative solve of B.
2. Solve Au = w for vector u using iterative solver
3. Form Sv = � Cu for the next Krylov vector
4. Repeat Steps B.1–3 until enough Krylov vectors are attained for the iterative solve of B.

II. Solve Adf = � rf � Bdi for df

A. Form q = � rf � Bdi

B. Solve Adf = q for df using iterative solver
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which is the right-hand-side of Eq. (17). Then this equation, repeated here using q,
Adf ¼ q ð33Þ
is solved for the field variable update vector, df, using a linear iterative solver. With both update vectors now available, the
entire solution is updated and the Newton step is repeated until convergence is attained. The algorithm to compute a single
Newton iteration is summarized in Table 1.

The major cost of this procedure is the effort expended computing the interface update vector, di, via Eq. (27) and asso-
ciated operations. In fact, the computation of di requires two nested calls to an iterative linear solver, which we label as outer
and inner iterations. The outer iteration constructs the candidate solution for di from a successively larger Krylov subspace
KS ¼ fv; Sv; S2v; . . .g; however, the equation set that defines di is a relatively small system of dimension m (refer to step I.B.
above). The inner iteration is invoked for each new Krylov vector required by the outer iteration and arises from the iterative
solution of the much larger, n-dimensional system, Eq. (30); refer to step I.B.2. above.

If kS denotes the number of outer iterations needed to solve for di, then the entire Newton step for Method 3 will require
kS + 2 solves of n-dimensional systems. At first glance, this effort may appear to be substantially more than the one iterative
solve of the global system (of dimension n + m � n) needed for each Newton step in Method 2. However, kS will likely be
small; it is guaranteed to be bounded by kS 6m� n. More significantly, the block matrix A in the iterative solves of Method
3 is expected to result in substantially better behavior than that expected from iterative solves involving the global Jacobian
matrix J in Method 2. Thus, the solves associated with the Schur complement form of Method 3 may be substantially easier
and cheaper than those required for Method 2. These ideas will be further explored via computations on test problems pre-
sented in the next section.

3.2. Preconditioning

We expect the iterative solution of the linear systems involving block matrix A in M3 to be relatively easy, due to its
underlying form (although its n � n dimension will never make it cheap). Indeed, our results, discussed below, show that
the simple, a priori row scaling is enough to allow convergence without additional preconditioning.

Benefits may be obtained, however, from preconditioning the Schur subproblem, Eq. (27), thus we consider constructing
an approximation of S�1 to be used in this manner. We propose the following:
eS�1 ¼ � CðdiagðAÞÞ�1B
h i�1

ð34Þ
where we have replaced A in the original definition of S with its diagonal matrix, whose inverse is trivial to form. Then eS can
be computed using a series of matrix multiplications.

We intend to apply eS as a left preconditioner on Eq. (27), giving
eS�1Sdi ¼ eS�1rS ð35Þ
as the equation to solve with GMRES. The Krylov subspace for this problem becomes KeS ¼ fv; eS�1Sv; . . .g, where the initial
Krylov vector v is now defined as v � eS�1rS.

The inverse of eS must be calculated to implement Eq. (35). However, this is relatively cheap and easy, since eS is a small,
m �m matrix. Here, we accomplish this via an additional inner iteration nested within the loop computing the Sv products,
whereby the action of eS�1 is computed by solving
eSs ¼ Sv ð36Þ
where s is the Krylov vector of the new subspace KeS described above. The procedure is repeated until sufficient number
of Krylov vectors are accumulated for a satisfactory solution to Eq. (35). In our computations, we rely on GMRES to solve



7950 L. Lun et al. / Journal of Computational Physics 229 (2010) 7942–7955
for Eq. (36), although its direct solution using LU decomposition, while more expensive, would also likely be effective. The
additional computational expense of this added solve of an m �m system is insignificant.

3.3. Scaling of computational effort

An analysis of the precise scaling of computational effort for the three approaches requires an in-depth consideration of
the discretization of the Stefan problem, including the underlying details of representation of the field quantities, the method
employed for front tracking, and the problem geometry and meshing, as well as the solver details, most notably the size of
the Krylov spaces employed or other convergence criteria associated with the iterative linear solvers. Such details are dis-
cussed in derivations presented in [41]. Here, we outline the leading-order effects that scale computation effort.

We first simplify our analysis by restricting factors that arise from the underlying discretization. Namely, we consider a
two-dimensional problem domain that is discretized by a structured mesh containing an equal number of nodes, Nn along
each edge, so that the total number of nodes is given by N2

n. We then assume that the total number of unknowns in the prob-
lem, Nt, is simply proportional to the total number of nodes, i.e., Nt / N2

n. Note that we may also relate these quantities to
those already introduced to quantify the block matrices, so that Nt = n + m � n (relying on the assumption that m� n)
and Nn �m (which assumes that the one-dimensional free boundary is discretized in a manner comparable to an edge of
the domain).

The computational effort associated with M1 is proportional to the number of operations needed to factorize a banded
matrix of total dimension Nt and with a bandwidth proportional to Nn, which is a generic outcome of any discretization
of a two-dimensional domain. Thus, the computational work associated with each Newton iteration using direct solution,
which we denote as WM1, scales to leading order as
WM1 / NtN
2
n ¼ N4

n ð37Þ
Method 2 applies GMRES to solve the linear equation arising from the global Newton step, and the total operation count is
dominated by Householder vector generation and orthogonalization, leading to the estimate of computational work of
WM2 / Ntk
2
J ¼ N2

nk2
J ð38Þ
where kJ is the size of the Krylov subspace employed.
Finally, the total effort required by the iterative Schur complement formulation, M3, depends on several pieces; however,

the most expensive involves the nested iterative solves associated with the Schur subproblem. To leading order, we estimate
the computational effort as
WM3 / NtkSk2
A ¼ N2

nkSk2
A ð39Þ
where kS and kA are the sizes of the Krylov subspaces employed to solve the outer and inner solves of the Schur subproblem,
respectively.

4. Results and discussion

The model Stefan problem described in Section 2 is employed in the ensuing tests of the different solution strategies.
Physical properties are based on the melt and solid phases of cadmium zinc telluride, a II–VI semiconductor crystal of stra-
tegic importance for radiation detection and homeland security [42–44], given in Lun et al. [45]. For this test problem we
employ the following values for the dimensionless parameters: j = 0.5, PeS = 10�3, Tmp = 0, Bi = 10, and Tf = z. Fig. 1(b) shows
the solution of the temperature field and corresponding melt–solid interface computed on the 40 � 40 element, deforming-
grid mesh shown, at convergence, in Fig. 1(a). The same initial guess is employed for each mesh and calculation.

For all cases, we deem the Newton iterations on the Stefan problem to be convergent when both the ‘2 norms of the resid-
uals and the update vectors are less than 10�4 that of the solution vector. When applying the procedures based on iterative
linear solvers, i.e., Methods 2 and 3, we either perform a set number of iterations as determined by the size of the Krylov
subspace, as in Sections 4.1 and 4.3, or we iterate the linear solver until the ‘2 norm of the linear system residuals vector
is less than a certain tolerance, as in Section 4.2. Different values for these limits will be considered in the ensuing tests.

4.1. Convergence

For the cases considered in this section, we employ a 20 � 20 element mesh over the computational domain. This discret-
ization leads to a problem characterized by 41 nodes along the edges of the domain for the biquadratic, finite-element dis-
cretization. This rather small case comprises 1681 temperature unknowns, 3362 mesh unknowns, and 41 unknowns
associated with the interface position, yielding 5084 total unknowns. When this problem is put into block form, there are
n = 5043 field (mesh and temperature) unknowns and m = 41 interface unknowns.

When this system is solved using our standard direct solver (M1), the system exhibits quadratic convergence and requires
just three Newton iterations. Fig. 2 shows the performance of the iterative solver-based methods M2 (full Jacobian) and M3
(Schur complement) by plotting the number of Newton iterations required for the solution to reach convergence as a



Fig. 2. Comparision of number of Newton iterations required to reach convergence as a function of number of (inner) Krylov vectors.
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function of the number of Krylov vectors employed in the solves of the larger systems. Here, kJ denotes the size of the Krylov
subspace employed for the solution of Eq. (14) in M2, involving one solve with the full Jacobian matrix, J, per Newton iter-
ation. For M3, kA represents the number of Krylov vectors applied to solve Eqs. (19) and (33) (once each per Newton iteration)
and the inner iterations that repeatedly solve Eq. (30) a total of kS times (the number of inner iterations performed) in each
Newton step; all of these solves involve block matrix A. Both kJ and kA are plotted along a common abscissa in the figure.

The number of Newton iterations required for convergence using Method 2, shown by the M2 curve in Fig. 2, decreases as
kJ increases, reflecting the more accurate solutions obtained for each Newton step as the size of the Krylov subspace is in-
creased. The system failed to converge for M2 when kJ < 55, while strong quadratic convergence (as judged by convergence of
the nonlinear problem residual in three Newton steps per the performance of M1) was achieved for cases when kJ > 180.

The performance of M3 depends on the size of kA and on the number of Krylov vectors employed for the outer iteration, kS,
to solve Eq. (27). Fig. 2 shows outcomes for two cases of kS = 10 and kS = 40. As for the case of M2, a larger-sized Krylov sub-
space, reflected by larger kA, generally results in a reduced number of Newton iterations required for convergence for both kS

parameters. In addition, both cases give a more reliable solution procedure than M2 for smaller Krylov subspaces, as evi-
denced by convergence for kJ P 26 when kS = 10 and kJ P 25 when kS = 40. In addition, M3 requires fewer Newton steps
for convergence for nearly all cases for comparable Krylov approximations, i.e., when kA = kJ. Of course, the downside for this
increase in robustness is a considerable increase in the cost per iteration, a factor of at least 2 + kS times greater than M2.
Curiously, M3 shows little improvement in behavior as a function of kS for the test problem considered here, which suggested
the analysis described next.

The case of kS = 40 represents the situation where the Krylov subspace size is the same size (including the initial vector) as
Eq. (27), with m = 41, thus the solution to the Schur complement subproblem should be nearly exact. However, this does not
imply that the interface update vector, di, is exact, since there is some error in solving the inner problem, Eq. (30), that effec-
tively approximates the Schur matrix, S. That di may be computed inaccurately also affects the accuracy of the field update
vector, df, since di is need to form the right-hand-side vector of Eq. (33). To remove the errors associated with an inaccurate
computation of the interface update vector, we pose a hybrid implementation of the Schur method, where we compute an
‘‘exact” update, di, by evaluating the Schur matrix, S, and the modified right-hand-side vector, rS, using a direct factorization
of A�1 and by solving the Schur subproblem, Eq. (27), using a direct method. The remaining field update vector is then com-
puted via solution of Eq. (33) by GMRES with a Krylov subspace of size kA. Of course, this mixed solution approach is not a
practical implementation of M3, since the cost of the ‘‘exact” solve of the Schur complement subproblem is nearly as expen-
sive as the cost of the direct approach, M1.

The effect of eliminating the error associated with the interface update is shown in Fig. 2 by the curve labeled M3-hybrid.
This hybrid approach proves to be quite robust, with convergence attained for Krylov subspaces as small as kA = 11. In addi-
tion, substantially fewer iterations are required for intermediate values of kA � 20 � 60. Clearly, controlling the error asso-
ciated with computing the update vector, di, is important for improving the performance of the Schur complement
formulation.

A summary of the conditions needed for Newton’s method to converge and to converge quadratically for each case is pro-
vided in Table 2.

4.2. Tolerances and preconditioning

In the tests of this section, we consider the effect of changing convergence criteria and preconditioning (as described in
Section 3.2) on the performance of the Schur complement approach, M3. The case studies are performed using a 40 � 40 ele-
ment mesh that yields n = 19,683 field (mesh and temperature) unknowns and m = 81 interface unknowns.



Table 2
The minimum number of Krylov vectors (kJ for M2 and kA for M3) needed for Newton’s method to converge to the solution and to
converge quadratically.

M2 M3, kS = 10 M3, kS = 40 M3, hybrid

Solution to converge 55 26 25 11
Quadratic convergence 181 110 108 108

Table 3
Effect of tolerances and Schur preconditioning on the number of Newton iterations required to convergence and on
number of iterations of outer solver during first Newton iteration (# Newton iterations/# Outer iterations). Cases of
failure of Newton iteration to converge are indicated.

�o �i Preconditioning

off on

1 � 10�4 1 � 10�5 3/16 3/16
1 � 10�4 1 � 10�4 4/16 3/16
1 � 10�3 1 � 10�4 4/13 3/13
1 � 10�3 1 � 10�3 fail (2)/13 4/13
1 � 10�2 1 � 10�3 fail (1)/8 4/9
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In these tests, we vary the convergence tolerance of the outer and inner solver loops, �o and �i, respectively, for the use of
M3 both without and with preconditioning of the Schur subproblem. Table 3 lists the number of Newton iterations needed
for convergence and the number of outer iterations (i.e., the iterations needed to solve Eq. (27) or (35) to the convergence
level specified) per Newton iteration for the various cases. The number of outer iterations is an important measure of M3,
since it corresponds to the number of Krylov vectors kS used in the computation and thus represents the approximate factor
of additional computational effort required by M3 over M2 (see Eqs. (39) and (38) under the assumption that kA � kJ).

The outcome of using nominal values of �o = 1 � 10�4, �i = 1 � 10�4, as done for all prior computations, is shown on the
second row of Table 3. Notice that, while not changing the number of outer iterations, the application of preconditioning
does reduce the number of Newton iterations required for convergence, presumably by improving the accuracy of computing
the interface update vector, di. A similar outcome can be obtained by reducing the inner iteration tolerance to �i = 1 � 10�5

for the same value of �o = 1 � 10�4, which would also increase the accuracy of computing di.
Reducing the outer iteration tolerance to �o = 1 � 10�3 reduces the number of outer iterations required (and thus the

overall computational effort) with no change in the convergence behavior of the nominal case; however, preconditioning
again results in one fewer Newton iteration; see row three of the table. Further reducing the tolerances causes the unpre-
conditioned system to fail to converge, while preconditioning allows for convergence of the Newton steps with as few as
kS = 9 outer iterations on the Schur subproblem.

4.3. Scaling of computational effort

The results of the previous section addressed issues of robustness and convergence of the solution methods. Here, we at-
tempt to address the equally important issue of how the computational effort scales for each method as the size of the
underlying problem grows. We examine cases corresponding to three different mesh sizes with the same number of
elements in each direction, Ne � Ne, for Ne = 20, 40, and 80 elements. The sizes of the matrices associated with the two
smaller meshes were described in the two prior sections; the 80 � 80 mesh produced a system with n = 77,763 and
Fig. 3. Plot of computational effort versus problem size for one Newton step using M1, M2, and M3.



Fig. 4. Scaling of computational effort of (a) method M2 on kJ, (b) method M3 on kA, and (c) method M3 on kS.
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m = 161. Tests were conducted by measuring the amount of time needed to perform one Newton step on a dedicated com-
puter on each of these meshes for the three solution procedures considered here.

Fig. 3 plots the log of computation time for one Newton step versus the log of Nn for the three methods. For M2, the num-
ber of Krylov vectors was fixed at kJ = 800. For M3, the number of outer and inner Krylov vectors were fixed at kS = 20 and
kA = 200. From the slope of the linear fit to the three computations, the computational effort scalings predicted in Section 3.3
are confirmed, namely WM1 / N4

n and both WM2 and WM3 are proportional to N2
n.

Fig. 4 shows how M2 and M3 solutions computed on the 80 � 80 mesh scale with the number of Krylov vectors used by
GMRES. Again, the plots of the log of computation time versus the log of number of Krylov vectors confirm the analyses pre-
sented above. Fig. 4(a) indicates that the work needed for a Newton step via M2 increases with the square of the number of
Krylov vectors, WM2 / kJ. Similarly, Fig. 4(b) and (c) confirm that a Newton step in M3 scales proportionally to k2

A and kS,
respectively.
5. Concluding remarks

We have presented a new, Schur complement method to solve a free-boundary, Stefan problem comprising a melt–solid
interface and its associated heat transfer problem, similar to those that arise in solidification and melt crystal growth models,
via a deforming-grid technique. The motivation of this approach is to employ a full Newton iteration strategy that simulta-
neously solves for the field and interface unknowns, while casting the problem in a form that is more amenable to solution
via iterative linear solvers. The use of these solvers will readily allow for parallel techniques to compute large-scale
problems.

The initial studies presented here show promise for this new approach, especially for larger computations needed to solve
three-dimensional problems. The traditional direct solution of the global Newton iteration (i.e., the Isotherm–Newton meth-
od) works extremely well to solve the two-dimensional test problem posed here, yielding quadratic convergence and requir-
ing very few iterations. However, the poor scaling of computational effort of such direct methods makes strategies based
upon linear iterative solvers more attractive as the problem size grows. This advantage, however, may be negated if the iter-
ative linear technique fails to accurately solve for a Newton step. In this aspect, the Schur approach is encouraging.
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There is evidence from the two-dimensional problem solved here that the Schur complement formulation promises to be
more robust than iterative solution of the global system. As shown by the results of Section 4.1, Newton steps solved using
GMRES were effective in solving the Stefan problem, even resulting in quadratically converging algorithms when a suffi-
ciently large number of Krylov vectors were employed. Notably, for a fixed problem size, the Schur complement approach
(M3) allowed for convergence in as few as half the number of Krylov vectors needed to successfully converge when a linear
iterative solver was applied to the original, global Newton step (M2). Results from a hybrid-Schur implementation indicated
that even better robustness is possible when the accuracy of the interface update vector, computed from the Schur subprob-
lem, is improved. Consistent with this assertion, the robustness and efficiency of the Schur approach is improved by precon-
ditioning the Schur subproblem, as shown by the outcomes of Section 4.2.

The robustness of the Schur complement approach is tempered by its computational expense for two-dimensional Stefan
problems. The results from Section 4.3 corroborated the leading-order scaling of computational effort presented in Section
3.3. Using these estimates, we can make several assertions about the relative computational cost of each method. Fig. 3
showed that both iterative solution methods, M2 and M3, took more time to solve a Newton step than M1 for the problem
sizes considered here. However, eventually the M1 curve would overtake the M2 and M3 curves as the problem size is in-
creased, provided the needed numbers of Krylov vectors do not increase at an appreciable rate. However, our scaling results
also indicate that the Schur complement method will likely always be more expensive than the iterative global strategy, M2,
due to the nested solution loops, for a two-dimensional problem.

Based on our results, the optimal solution strategy for a three-dimensional Stefan problem (i.e., a problem with three-
dimensional field variables and a two-dimensional free boundary) is posited to be quite different than that for the two-
dimensional problem. The direct solution method, M1, pays a steep penalty, since the total number of equations grows as
Nt ¼ N3

n and the anticipated bandwidth of the Jacobian matrix increases to be proportional to N2
n rather than simply Nn in

the two-dimensional problem. The computational effort scaling result is then
WM1;3D / NtðN2
nÞ

2 ¼ N7
n ð40Þ
The solution strategies that employ linear iterative solvers are less strongly affected; the effort for both changes as the total
degrees of freedom change with the number of nodes, Nt ¼ N3

n, to yield
WM2;3D / Ntk
2
J ¼ N3

nk2
J ð41Þ

WM3;3D / NtkSk2
A ¼ N3

nkSk2
A ð42Þ
Clearly, as long as the needed number of Krylov vectors kJ and kA scale with problem size in a manner no worse than
ðkJ; kAÞ / N2

n ¼ N2=3
t , schemes M2 and M3 will be less expensive for the solution of large, three-dimensional problems. Indeed,

our experience is that the size of the Krylov space needed for convergence is typically proportional to N1=2
t or less [41] and

that, when convergent, iterative techniques provide an immense saving for the solution of three-dimensional problems. Note
that the factor kS for scaling of effort in the Schur approach is rarely expected to be important, since the size of the interface
subproblem will always be substantially smaller than that associated with the field variables. If, as expected, the Schur com-
plement formulation proves more robust than M2, the k2

A < k2
J savings in effort realized from kA < kJ will likely more than

overcome the factor of kS in effort for M3.
Both approaches employing linear iterative solvers for Newton steps can successfully solve the two-dimensional Stefan

problem considered here, and both offer clear computational savings for larger problems, especially three-dimensional ones.
However, the Schur complement approach promises increased robustness—a successful solution could be computed using
significantly fewer Krylov vectors. We believe that this feature of the Schur approach will make it even more valuable for
the solution of three-dimensional problems, since, in our experience, often one cannot afford to compute a large enough Kry-
lov space for the convergence of these problems. This may mean the difference between success or failure for a large-scale
computation.

We believe the success of this approach is attributable to the Schur complement formulation that maps the computation
of the free boundary into a smaller subproblem, whose challenges can be more directly and independently addressed. Fur-
thermore, the larger problem that is left behind involves a matrix block that is likely more amenable to iterative solution
than the full Jacobian matrix of the unmapped problem. Namely, solving a linear system with matrix A is likely to be easier
than solving the linear system with matrix J. In addition, appropriate preconditioning of A will undoubtedly yield further
benefits for the solution methods considered here. We believe that the Schur complement formulation could prove to be
an important tool for solving three-dimensional Stefan problems in a reliable and efficient manner.
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